By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyse site usage, and assist in our marketing efforts. View our Privacy Policy for more information.
Neurodegenerative disorders

S Biswas & A Bagchi, 2022. Study of the Effects of Nicotine and Caffeine for the Treatment of Parkinson's Disease, Applied Biochemistry and Biotechnology, published online.

Study of the Effects of Nicotine and Caffeine for the Treatment of Parkinson's Disease

S Biswas & A Bagchi
Applied Biochemistry and Biotechnology
October 3, 2022

ABSTRACT

Parkinson's disease (PD) is considered to be a highly severe neurological disorder. PD occurs due to a decrease in dopamine production by the degeneration of dopamine-secreting neurons. Genetic mutations, environmental toxins and lifestyle are some of the risk factors of the progressive neurodegenerative disorder PD. Parkin protein, which is encoded by the PARK gene, is one of the important proteins, which is one of the causative agents. The Parkin protein has several mutations which lead to the development of the disease. Apart from PD, the mutations in Parkin also showed to be responsible for the onset of diseases like cancers. It is reported that the E28K mutation in the Ubl domain of parkin is highly deleterious and responsible for the onset of melanoma. This necessitates the development of new therapeutics against PD. Molecules like levodopa, carbidopa, monoamine oxidase type B inhibitors (MBO inhibitors), dopamine agonists, anticholinergics and amantadine are some commonly used drugs used to treat PD. Recently, there have been increasing evidence which shows that cigarette smoking and consumptions of coffee and tea could have important roles in modulating the risk of PD. Therefore, we planned to analyse the molecular mechanism of the binding interactions of nicotine, caffeine and the polyphenol ( -)-epigallocatechin-3-gallate (EGCG) from green tea with Parkin protein to predict their therapeutic potentials in PD targeting the E28K mutation. We focused on E28K mutant of Parkin as this mutant form of parkin has been shown to be the most pathogenic one. We could identify the potential therapeutic aspects of these natural products to prevent the onset of PD. This work may therefore be considered to be the first of its kind which would take into consideration the environmental toxicological approach in designing natural product inhibitors against the onset of PD.

More research

All research