Nehlig A, et al (2000). Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Res;858:71-77.

Print this page


Caffeine is a behavioral stimulant consumed on a worldwide basis. The question of whether caffeine is addictive has been debated for over a decade. Caffeine acts as a mild positive reinforcer but is not consistently self-administered in humans or animals. With [14C]2-deoxyglucose autoradiography, we studied the effects of increasing doses of caffeine on cerebral glucose utilization in rats. At 1 mg/kg, caffeine activated the caudate nucleus mediating locomotion, and the raphe nuclei and locus coeruleus involved with mood and sleep. After 2.5 and 5 mg/kg caffeine, metabolic activation spread to other components of the nigrostriatal dopaminergic system, the thalamus, ventral tegmental area and amygdala. The functional activation of the shell of the nucleus accumbens, an area involved in addiction and reward, was only induced by the highest dose of caffeine, 10 mg/kg. At this dose, the activation of the shell of the nucleus accumbens occurred together with that of the core of the nucleus accumbens and of most other brain regions. These data correlate well with the known sensitivity of locomotion, mood and sleep to low doses of caffeine. They also show that low doses of caffeine which reflect the usual human level of consumption fail to activate reward circuits in the brain and thus provide functional evidence of the very low addictive potential of caffeine.

This information is intended for Healthcare professional audiences.
Please consider the environment before printing.